COT 6405 Introduction to Theory of Algorithms

Topic 9. Randomized Quicksort

Worst case quicksort

- What will happen if the array is already sorted?
- The partitioning routine produces n -1 elements and one with 0 elements.
- How about the running time?
$-\mathrm{T}(\mathrm{n})=\mathrm{O}\left(n^{2}\right)$

Improving quicksort

- The real liability of quicksort is that it runs in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ on an already-sorted input
- How to avoid this?
- Two solutions
- Randomize the input array
- Pick a random pivot element
- How will these solve the problem?
- By insuring that no particular input can be chosen to make quicksort run in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

Randomized version of quicksort

- We add randomization to quicksort.
- We could randomly permute the input array: very costly
- Instead, we use random sampling to pick one element at random as the pivot
- Don't always use $A[r]$ as the pivot.

Randomized version of quicksort

RANDOMIZED-PARTITION(A, p, r)
$i \leftarrow \operatorname{RANDOM}(p, r)$
exchange $A[r] \leftrightarrow A[i]$
return PARTITION(A, p, r)

Randomization of quicksort stops any specific type of array from causing the worst case behavior

- E.g., an already-sorted array causes worst-case behavior in non-randomized QUICKSORT, but not in RANDOMIZEDQUICKSORT.

Randomized version of quicksort

RANDOMIZED-QUICKSORT(A, $p, r)$
if $p<r$
then $q \leftarrow$ RANDOMIZED-PARTITION (A, p, r) RANDOMIZED-QUICKSORT(A, $p, q-1$) RANDOMIZED-QUICKSORT $(A, q+1, r)$

Analysis of quicksort

- We will analyze
- the worst-case running time of QUICKSORT and RANDOMIZED-QUICKSORT
- the expected (average-case) running time of RANDOMIZED-QUICKSORT

Worst-case analysis

- We saw a worst-case split (0:n-1) at every level of recursion in quicksort produces a $\Theta\left(n^{2}\right)$ running time, which,
- Intuitively, is the worst-case running time
- We now prove this assertion

Worst-case analysis (cont’d)

- Let $T(n)$ be the worst-case time for the procedure QUICKSORT on an input of size n, we have the recurrence
- $T(n)=\max _{0 \leq q \leq n-1}(T(q)+T(n-q-1))+\Theta(n)$
- q ranges between 0 and $n-1$, because the procedure PARTITION produces two subproblems with total size $n-1$
- We guess that $\mathrm{T}(\mathrm{n}) \leq c n^{2}$ for some constant c

Worst-case analysis (cont’d)

- Substitution this guess into the recurrence, we obtain

$$
\begin{array}{r}
T(n) \leq \max _{0 \leq q \leq n-1}\left(c q^{2}+c(n-q-1)^{2}\right)+\Theta(n) \\
\quad=\max _{0 \leq q \leq n-1}^{c}\left(q^{2}+(n-q-1)^{2}\right)+\Theta(n)
\end{array}
$$

Exercise

- What values of q can enable the expression $q^{2}+(n-q-1)^{2}$ to achieve the maximum value?

Worst-case analysis (cont’d)

- $q^{2}+(n-q-1)^{2}=2 q^{2}-2(n-1) q+(n-1)^{2}$
- What's the shape of this function?
- A cup-shaped parabola

Worst-case analysis (cont’d)

- $\left.T(n) \leq \underset{0 \leq q \leq n-1}{c} \max ^{2}+(n-q-1)^{2}\right)+\Theta(n)$

The expression $q^{2}+(n-q-1)^{2}$ achieves the maximum value when q is either 0 or $n-1$.

Worst-case analysis (cont'd)

- This observation gives us the bound

$$
\begin{aligned}
-\max _{0 \leq q \leq n-1}\left(q^{2}+(n-q-1)^{2}\right) & =(n-1)^{2} \\
& =n^{2}-2 n+1
\end{aligned}
$$

- Continuing with our bounding of $\mathrm{T}(\mathrm{n})$, we obtain

$$
\begin{aligned}
T(n) & \leq \underset{0 \leq q \leq n-1}{c \max _{1}}\left(q^{2}+(n-q-1)^{2}\right)+\Theta(n) \\
& =\mathrm{c} n^{2}-\mathrm{c}(2 \mathrm{n}-1)+\Theta(n) \\
& \leq \mathrm{c} n^{2}
\end{aligned}
$$

Since we can pick c large enough so that $c(2 n-1)$ dominates $\Theta(n), \mathrm{T}(n)=\mathrm{O}\left(n^{2}\right)$

Exercise

- Let $T(n)$ be the worst-case time for the procedure QUICKSORT on an input of size n. Prove $\mathrm{T}(\mathrm{n})=\Omega\left(n^{2}\right)$

Worst-case analysis (cont’d)

- $T(n)=\max _{0 \leq q \leq n-1}(T(q)+T(n-q-1))+\Theta(n)$
- We guess that $\mathrm{T}(\mathrm{n}) \geq d n^{2}$ for some constant d Substitution this guess into the recurrence, we obtain

$$
\begin{aligned}
& T(n) \geq \max _{0 \leq q \leq n-1}\left(d q^{2}+d(n-q-1)^{2}\right)+\Theta(n) \\
& =\max _{0 \leq q \leq n-1}\left(q^{2}+(n-q-1)^{2}\right)+\Theta(n) \\
& =\mathrm{d} n^{2}-\mathrm{d}(2 \mathrm{n}-1)+\Theta(n) \\
& \geq \mathrm{d} n^{2}
\end{aligned}
$$

Since we can pick a small d so that $\Theta(n)$ dominates $d(2 n-1), \mathrm{T}(n)$
$=\Omega\left(n^{2}\right)$

Average case analysis

- The dominant cost of the algorithm is partitioning.
- What is the maximum number of calls to the function PARTITION?
- Hint: PARTITION removes the pivot element from future consideration each time.
- Thus, PARTITION is called at most n times.

Partition array $A[p . . r]$

PARTITION(A, $p, r)$
$x \leftarrow A[r] \quad / /$ select the pivot
$i \leftarrow p-1$
for $j \leftarrow p$ to $r-1$
if $A[j] \leq x$

$$
i \leftarrow i+1
$$

exchange $A[i] \leftrightarrow A[j]$
// move the pivot between the two subarraies exchange $A[i+1] \leftrightarrow A[r]$
// return the pivot
return $i+1$

Average case analysis (cont'd)

Lemma 7.1: Let X be the number of comparisons performed in line 4 of PARTITION over the entire execution of QUICKSORT on an n-element array. Then the running time of QUICKSORT is $O(n+X)$.

The amount of work of each call to PARTITION is a constant plus the number of comparisons performed in its for loop

Find the number of comparisons

- For ease of analysis:
- Rename the elements of A as $z_{1}, z_{2}, \ldots, z_{n}$, with z_{i} being the i-th smallest element.
- Define the set $z_{i, j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$ to be the set of elements between z_{i} and z_{j}, inclusive.

Cont'd

- Each pair of elements is compared at most once. Why?
- Because elements are compared only to the pivot element, and then the pivot element is never in any later call to PARTITION.

Cont'd

- Our analysis uses indicator random variables
- Let $X_{i, j}=I\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}$.

$$
=\left\{\begin{array}{l}
1 \text { if } z_{i} \text { is compared to } z_{j} \\
0 \text { if } z_{i} \text { is not compared to } z_{j}
\end{array}\right.
$$

- Considering whether z_{i} is compared to z_{j} at any time during the entire quicksort algorithm, not just during one call of PARTITION.

Cont'd

- Since each pair is compared at most once, the total number of comparisons performed by the algorithm is

$$
X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j} .
$$

Take expectations of both sides, use Lemma 5.1 and linearity of expectation:

$$
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \mathrm{E}\left[X_{i j}\right] \\
& =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left\{z_{i} \text { is compared to } z_{j}\right\}
\end{aligned}
$$

Exercise

- Prove $\mathrm{E}\left[X_{i j}\right]=\operatorname{Pr}\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$

Cont'd

$$
\text { - } \begin{aligned}
\mathrm{E}\left[X_{i j}\right] & =1 \cdot \operatorname{Pr}\left(X_{i j}=1\right)+0 \cdot \operatorname{Pr}\left(X_{i j}=0\right) \\
& =\operatorname{Pr}\left(X_{i j}=1\right) \\
& =\operatorname{Pr}\left(z_{i} \text { is compared to } z_{j}\right)
\end{aligned}
$$

Cont'd

- Now we need to find the probability that two elements are compared.
- Think about when two elements are not compared.
- numbers in separate partitions will not be compared.
$-\{8,1,6,4,0,3,9,5\}$ and the pivot is 5 , so that none of the set $\{1,4,0,3\}$ will be compared to any of the set $\{8,6,9\}$

Cont'd

- Once a pivot x is chosen, such that $z_{i}<x<z_{j}$, then z_{i} and z_{j} will never be compared at any later time
- If either z_{i} or z_{j} is chosen as a pivot before any other element of $Z_{i j}$, then it will be compared to all the elements of $Z_{i j}$, except itself.
- The probability that z_{i} is compared to z_{j} is the probability that either z_{i} or z_{j} is the first element chosen to be the pivot

Cont'd

- There are ($\mathrm{j}-\mathrm{i}+1$) elements, and pivots are chosen randomly and independently.
- Thus, the probability that any particular one of them is the first one chosen is $1 /(j-i+1)$

Cont'd

Therefore,
$\operatorname{Pr}\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}=\operatorname{Pr}\left\{z_{i}\right.$ or z_{j} is the first pivot chosen from $\left.Z_{i j}\right\}$
$=\operatorname{Pr}\left\{z_{i}\right.$ is the first pivot chosen from $\left.Z_{i j}\right\}$
$+\operatorname{Pr}\left\{z_{j}\right.$ is the first pivot chosen from $\left.Z_{i j}\right\}$
$=\frac{1}{j-i+1}+\frac{1}{j-i+1}$
$=\frac{2}{j-i+1}$.
[The second line follows because the two events are mutually exclusive.]
Substituting into the equation for $\mathrm{E}[X]$:
$\mathrm{E}[X]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$.
Evaluate by using a change in variables $(k=j-i)$ and the bound on the harmonic series in equation (A.7):

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \quad \begin{array}{l}
\text { Harmonic Series: } \\
\sum_{k=1}^{n} \frac{2}{k}=2 \sum_{k=1}^{n} \frac{1}{k}<2 \ln n+1=\mathrm{O}(\operatorname{lgn}) \\
\end{array} \\
& <\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \quad \sum_{i=1}^{n-1} O(\lg n) \\
& =O(n \lg n) .
\end{aligned}
$$

So the expected running time of quicksort, using Randomized-Partition, is $O_{30}(n \lg n)$.

Changing variables

- $E[\mathrm{X}]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$
- Let $k=j-i$. Then, $j=k+i$
- j ranges between $i+1$ and n.
- This means $k+i$ ranges between $i+1$ and n
- Thus, k ranges between 1 and $n-i$
- $E[\mathrm{X}]=\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$

